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A local theory for the energy loss of a relativistic electron beam, incident normally on a thin ionic crystal
film, is developed and applied to the energy region of the surface modes of vibration. It is found that the
loss function including retardation is essentially the same as that without retardation. Important effects
associated with experimental resolution in energy and momentum are included in the analysis. With the
inclusion of the characteristics of the apparatus, the theoretical line shapes and positions are in good agree-
ment with the experimental results on LiF obtained by Boersch, Geiger, and Stickel. A study of the effects
of substrate thickness and conductivity is reported. A good conductor, like aluminum, has a strong effect

on the loss function, whereas a poor conductor, like carbon, has little effect.

I. INTRODUCTION

Surface vibrational modes in ionic solids have been
the subject of several investigations, both theoretical
and experimental. Fuchs and Kliewer! predicted the
existence of surface modes in LiF and gave their
dispersion relations for slabs of arbitrary thickness.

One of the techniques for observing the surface modes
is to measure the energy loss experienced by fast
electrons projected through a film of the ionic crystal.
Some work has been done theoretically to derive energy-
loss distribution functions for this case, but these
theories have not included the retardation of the
electromagnetic fields, or they have not included the
effect of the substrate upon which the films are de-
posited.?? Retardation and substrate effects are of
interest because of the experiment of Boersch, Geiger,
and Stickel.* These investigators measured the energy-
loss function for 25-keV electrons normally incident on
films of LiF which were deposited on substrates of
amorphous carbon and interpreted their measured peak
as due to the low-frequency surface mode. Fujiwara and
Ohtaka® found that their nonretarded single-film theory
corroborated this interpretation, and they also showed,
in agreement with the experiment, that there should be
no loss peak arising from the high-frequency mode.
However, their theory did not reproduce the experi-
mental results in any detail.

In this paper, we present a theory of electron energy
loss in LiF including retardation® and the effects of a
substrate. Materials in this theory are represented by a
dielectric-response function which is a function of the
frequency only, that is, we are considering the local
approximation. It is this approximation which FK used
in their study of the surface modes of ionic crystals.

Figure 1 shows a regional plot of the K-Q plane. The
dimensionless variables used are

K=k/k¢, (1&)
Q=w/w;, (1b)
L=k¢d, (1C)

2

with
k,=wl/6.

k is the wave vector, w is the angular frequency, ¢
is the speed of light, @ is the slab thickness, and w, is the
transverse optical frequency for the ionic crystal. Any
transverse wave which has coordinates (X, Q) putting
it on the left-hand side of the light line’ cannot be
entirely mechanical. This wave must couple with a
photon field external to the slab and thus is radiative
in character. On the other hand, mechanical vibrations
which are longitudinal can exist on the left-hand side of
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retardation effects. Curves are plotted for dimensionless slab
thicknesses L=0.01 (=520 A) and L=0.1 (=5200 A).

K= completely uncoupled from the photons. On the
right-hand side of the light line is the nonradiative
region. In this region photons can exist coupled to the
mechanical waves, but these photons cannot leave the
material. In general, as one moves further to the right
in Fig. 1, the fraction of the energy in the coupled
mechanical-photon waves which is lightlike decreases.
So the significance of the light line in this paper is that
waves with K <Q in general couple to fields outside the
slab and can radiate their energy from the material,
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T16. 2. Multilayer geometry used in the calculation of energy
loss for an arbitrary number of layers. The pth layer and the
labeling of its boundaries and those of its neighbors are shown
explicitly.

whereas energy in waves for which X > must remain in
the material.

FK have shown that in the radiative region there
exist normal modes for LiF slabs called virtual modes,
and in the nonradiative region there exist polariton and
surface modes. Considering Fig. 1 further, we have
separated the nonradiative region into three sections in
the @ direction with the lines @=Q; and @=Q,=1, the
dimensionless longitudinal and transverse optical
frequencies defined as the frequencies for which
€(Q2) =0 and | ¢(Q) | >, respectively. €(Q) is the local

II. ENERGY-LOSS FUNCTION
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dielectric function of the ionic crystal given by
(@) =ext (c0—ex)/ (1—22). (2)

It is shown in Ref. 1 that for >Q; and 2<Q,, on the
nonradiative side, there exist a large number of polariton
modes which have sinusoidal spacial dependence. The
surface modes are found in the region Q;>Q>Q, with
Q> K ; their amplitudes decrease monotonically as one
moves from the surfaces toward the center of the slab.
It is the surface modes which are of particular interest in
this paper, so on Fig. 1 is plotted, from FK, the dis-
persion curves for the two surface modes for two thick-
nesses of LiF.

Because of its longitudinal character, we would
anticipate that the electron beam would interact
strongly with not only the surface modes but also with
the longitudinal modes of the crystal. However, in a
thin film these longitudinal modes, all with @=Q,, occur
only for specific values of the component of the wave
vector perpendicular to the film.! These restrictive con-
ditions thus preclude striking effects occurring at
©@=Q; when the film is thin.

In Sec. IT the general energy-loss theory for the
multilayered slab is developed. Section III is devoted to
the analysis of the computed energy-loss function for a
LiF slab with and without a substrate and the compari-
son of the results of these calculations with the experi-
mental data of BGS. Conclusions drawn from this work
are given in Sec. IV along with suggestions for future
theoretical and experimental work in this area.

FOR “l—1” ADJACENT FILMS

The energy loss is obtained by calculating the total work done on the incident particle by the fields induced in the
slab by the particle. In determining the fields we consider the incident particle as not deviating from its initial
velocity which limits the theory to high-energy electrons. Changes in the velocity of the particle are higher-order

effects.

It is necessary to calculate the total electric field in the presence of the incident charge for /— 1 slabs bounded by
! surfaces using the geometry shown in Fig. 2. We express the current associated with the incident charge as

J(X, t) = €05 (x)a(y)5(z—’”l),

where v is the velocity of the particle, x is its positive, ¢ is its charge, ¢ is the time, and Z, §, and 2 are unit vectors in
the respective Cartesian directions. Assuming nonmagnetic media, Maxwell’s equations are

VxE(x,)=—(1/¢)(3/0)B(x, 1),

VxB(x,t)=(1/c)(8/01)D (x, 1)+ (4r/c) J (x, 1),

VD (x,t)=4mp(x,1),
v-B(x,t)=0.

The displacement vector D (x, ) is given by

3)

D(x,t)= /t dl'e(t—1)E (x, 1),

where e(t—¢') is the Fourier transform of e(w), the local dielectric-response function appropriate for an isotropic
and homogeneous medium. In the solution of these equations an arbitrary layer is denoted by p with 2< p<1. The
vacuum regions are denoted 1 and /41, the latter representing the vacuum region occurring at the larger values of z.
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After forming the wave equation for E from Eqs. (3) and Fourier-transforming in #, y, and ¢ we find for the pth
layer

(¢*/dz*— o, )E (2, K, w) =— 8, (a,*+w?/1*) exp (iwz/v). “)
S, is given by?®
_ Ame k42w (1—e,02/c%) /v
Sp=—1 v e (a2 tw?/?) )

where k is a two-dimensional wave vector in the (x, y) plane given by k=*%k.3+k,y, and «,? is given by

ap?=Fk— e, (w)w?/ct (6)
All of the Fourier transforms are defined by
dw [ dk.dk, . .
f(x; Y, z,1)= [5_7; (27!')2 f(Z, k;w) eXP(ik’x_Wl)~ (7)
The solution of Eq. (4) can be written as
E, (2, k, ) =F, exp(a,2)+F, exp(—ay2)+S, exp (iwz/v), (8)

where F, and F,’ are integration constants. However, if the divergence equations of (3) are applied to (8), one
finds that there are only two independent integration constants. Indeed, because of cylindrical symmetry, the y
components may be taken as zero. The x components are related to the z components by

Fpr= (ikaty/R?) F
and

(F) = (—ikaoy/ B) (Fp*)'. 9)

The total number of constants which need to be determined is 2(/+1). These can be evaluated by using the
continuity of ¢,E,? and E,* at each interface between layers, in addition to the boundary conditions which must be
applied to the solutions in the vacuum regions bounding the lamina. If 2> w?/c? the fields must decay exponentially
as z goes to ==, which requires that

(Flz),=FL+12=O.

If B2<w?/c?, this same pair of vacuum constants must be set equal to zero in order that the fields propagate only
away from the lamina.

Applying the interface boundary conditions yields
Fpir? exp(appDy)+ (Fpia®)’ exp(—apDp) = (ep/€p1) Fp* €xp (apDyp)

+ (ep/€pp1) (Fp*)' exp (—oapDyp)+[ (ep/€pr1) Sp*— Sp1”] exp[i(w/v)D,] (10a)
and

Fpir® exp(appDp)— (Fpir®)’ exp(—apDy) = (ap/api1 ) Fp® exp (apDy)
— (op/api1) (Fp?)" exp(— apr)+[k2 (Sy"— Swlx)/ikxamlj exp[i (W/U)Dp]: (10b)

where D, is the value of the 3 coordinate for the pth interface (see Fig. 2). By using a vector-matrix formalism we
can solve Egs. (10) for the constants associated with layer (p+1) in terms of those of layer . Thus

[ Fpy? exp{[aﬂlhi(w/v)]Dp} ] [ F,* expl Lap—i(w/v)]Dp1} ]
=M, + 7Ty, (11)
(Fpi1?)" exp{—[apy1+i(w/v) IDp} (Fp*)" exp{—[ap+i(w/v)IDp1}

where, with m,* given by

mpi=%(€p/fp+liap/ap+l)’ (12)
the 2)X 2 matrix M, can be written as

[mp+ exp{ Lap—i(w/v)]dy} my~ exp{— Lapti(w/v)1dy} :I

myp~ exp{Lap,—i(w/v)1dy}  my* exp{— Lopti(w/v)1dp}

M,= (13)
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where d,, is the thickness of the pth layer. T'p, which contains the inhomogeneous parts of Egs. (10), is given by

[ Raptio(l—epat?/c)/ (Wh)  B/apurt-ive, (1—e,3%/c?)/ (vkepsr) |
€pr1 (0pyr®Fw?/1%) B & (a2t w?/1?)
T,= ; (14)
—k/aptio(1—ep1v?/c2)/ (vk)  k/apii—iwe, (1— €22/ c2)/ (vkepi1)
ept1(api’+w?/1?) & (™ +w?/1?)

where
k= (k24 k)2

Equation (11) is a recursion relation which, if repeatedly applied, will relate the “F”’ constants for the vacuum
regions on the two sides of the slab. This allows the boundary conditions for the vacuum regions, previously de-
scribed, to be applied. The resulting solution for the field constants F,? and (F,?)’ can then be written as

Fpi expf{[appi—i(w/v)]D,) p a 3 3
S 1RO B S ST 1 B (15)
(Fpi1®)" exp{—[op1ti(w/v) ID,} = bf ==
using the notation that
Y4
IT (M)
i=1
is the matrix product taken in the order M, M, ;- ++M>M;. Defining the matrix N by
Nll ZVI? l
V= =11 (M) (16a)
Nop Vo =1
and the vector Q by
1 L
Q= =2 [ II ()17, (16b)
X =1 =t

we have for k2% w?/c?

[a] [Ql/lVIIJ
= : (17a)
b 0

which results from thinking of the vacuum regions as slightly absorbing such that the fields damp to zero as
| 5| —o0. At the same time, Eq. (17a) allows, when k?<w?/c?, the resulting oscillatory fields to propagate only
outwards. When k2=w?/c? we must have
= , (17b)
b 0
in order that the fields be finite as | z | —.
Using Egs. (8) and (15), the total electric field may be expressed. However, it is unnecessary to proceed in that
manner. One can, at this point, calculate the total work done on the incident charge due to the electric field of the

medium, Ey (X, ¢). Ex (X, ) is the total field minus the field which would exist if there were no material. The work
done on the incident particle is

U= [dx[dt Ex(x,1)-J (%, t). (18)
If we Fourier-transform, we get for U the expression
U=— /dkzdkyf do AU (b, ), (19)
where
-1 o0
AU (b, ) = —~—f &2 Ew(s &, 0) ]z, —K, —a). (20)
(27)° )

[—AU (&, w)].is the integrand of an integral which gives the entire energy change of a single electron passing
through a lamina of dielectric material suspended in a vacuum. Thus, AU (k, ») represents that part of the energy
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experimental energy-resolution function as described in
Eq. (28).

Figure 7 shows ({(AU(Q))) for different sample
thicknesses. Here a direct comparison is made between
experiment and theory using a Gaussian energy-
resolution function in the theoretical curves. Two half-
widths for the Gaussian have been used, 0.017 and
0.010 eV. In each case the magnitudes of the peaks of
the distributions have been made equal.

Consider the situation for a 700-A film. The peak is
due primarily to the principal peak in (AU (?)) shown
in Fig. 5. The bulge on the high-frequency side of the
peak in Fig. 7 is due to averaging over the structure on
the high-frequency side of the main peak of Fig. 5
arising from the longitudinal optical mode and the
large-K region of the low-frequency surface mode.
Because of the asymmetry in the curve, it is seen that as
the energy-resolution function widens, the main peak in
(AU (2))) will move to the right and at the same time
the bulge will diminish. One sees from Fig. 7 that the
experimental curves for 700 and 400 A can be closely
reproduced theoretically by picking the correct resolu-
tion function width. This does not appear to be the
case, however, for the thinnest sample, as indicated by
Fig. 7.

Some calculations were performed to check whether
our results are sensitive to possible inaccuracies in the
determination of the film thickness. Figure 8(a) shows
the small effect on ((AU (2))) associated with increas-
ing the thickness from 700 to 800 A.

Little is known by the experimenters about the
angular-response function except the geometrical stop
angle of (10)™* rad. It is necessary, therefore, to
investigate the possible changes in the energy-loss
function caused by other plausible angular-response
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Fic. 6. Peak positions of the energy-loss distributions plotted
against the thickness of the layer. The experiment is compared
to three theoretical curves having different frequency-response
function widths, but with the angular-response function always
that of Eq. (29). [The theory curve for zero width is just
(AU(R) ).] Also shown is the position of peaks given by the
dispersion relation if the angular distribution is assumed to be
controlled by K/(K2+Q?/g%)™ for n=1 and n=2. Note the
expanded ordinate scale.
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F16. 7. Loss function ((AU(Q))) with the angular-response
function given by Eq. (29). Curves are for a Gaussian frequency-
response function with widths of 0.017 and 0.010 eV. Separate
graphs are shown for layer thicknesses of 240 and 700 A. Also
shown are the experimental curves of BGS.

functions. By extending the stop angle beyond (10)™*
rad (or K beyond 430), we would expect the main peak
of (AU(Q)) in Fig. 5 to be unaffected. However, the
two smaller peaks in the same figure should certainly
grow in magnitude. This means that the bulge on the
high-frequency side of ((AU(2))) shown in Fig. 7
should get larger. In Fig. 8(b) we have plotted the
experimental loss function along with three theoretical
loss functions. Each of the theoretical curves is for a
thickness of 700 A and a frequency response half-width
of 0.010 eV, but each has a different angular-response
function. Response function (I) is given by Eq. (29),
and response function (II) is given by

f(K)=1, K<860

=0, K> 860. (30)
As the figure shows, the bulge does not increase signifi-
cantly in relative size but the back side of the whole
peak moves to larger frequencies. Also, the effect of a
Gaussian function with half-width equal to 430 is
plotted as function (IIT). From these curves it is
apparent that the only way one could emphasize the
bulge region of the distribution in relation to the main
peak, would be to use a peculiar angular-response
function which is lower for small angles than it is for
large angles.
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Fic. 8. (a) Loss function ((AU(Q))) for two thicknesses,
700 and 800 A, compared with the experimental results for a
700-A film. The angular-response function is given by Eq. (29),
and the frequency-response function is Gaussian with a half-
width of 0.010 eV. (b) Loss function ({AU(Q) )) for three dif-
ferent angular-response functions, compared with the BGS
experimental curve. All curves are for a thickness of 700 A and
all three theoretical curves were calculated using a Gaussian
frequency-response function with a width of 0.010 eV. Angular-
response function I is given by Eq. (29), I is given in Eq. (30),
a?(is{)ll is a Gaussian centered at K =0 which has a half-width
0 .

LiF with Conducting Substrate

BGS* deposited their LiF films on a very thin layer
of amorphous carbon. To investigate theoretically the
possible effects of such a substrate, the problem of a
layer of free-electron metal behind the LiF was con-
sidered. The metal was represented by a local dielectric

function
(@) =1—[2,*/QQ+1vm) ], (31)

where @, is the plasma frequency of the metal in units
of the LiF transverse optical frequency and v, is a
damping parameter for the metal. In order to obtain
the loss function when a good conductor is used as a
substrate, constants appropriate to aluminum in the
low-frequency region, 7iw,=12.7 eV and 1/y,=
5.12(10)"Bw, sec, were used.'®

The electron energy-loss distribution AU (K, Q) with
an aluminum backplate of 520-or 100-A thicknessisvery
different from AU with no backplate. The LiF low-
frequency surface-mode peak is completely gone. All
that appears is the LiF longitudinal optical mode at @;
and the low-frequency surface mode of ALY Since the
conductivity of the metal for 2=1 is approximately
2.6(10)%w;,, the electric field component parallel to the
film face is suppressed at the metal-LiF interface. The
polarization symmetry of the low-frequency surface
mode in the LiF film thus precludes its occurring when a
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high-conductivity backplate of reasonable thickness is
present.18

If a dielectric function is used which represents a
metal with much lower conductivity, a larger electric
field parallel to the surface at the metal-LiF interface
could be sustained. To represent carbon, a dielectric
function was used which had a plasma energy fiw,=
0.1 eV and a phenomenological relaxation time 1/vm=
5(10) 8w, sec.”® At the LiF transverse optical frequency,
this “carbon” has a conductivity o (w;)~2(10)"%w,.
Calculations were carried out for carbon layers of 520
and 100 A on a 700-A-thick LiF slab. The resulting
distributions are essentially unchanged from the bare
LiF distributions. Numerically, the peak of ((AU (2)))
moves to higher energies by less than (10)7% eV.
Perhaps this result is not unreasonable since this carbon
has a conductivity equal to (10)7° of that of the Al

What might be the effect on the distribution if we
used another, somewhat higher conductivity, say (10)~*
of Al, with the same carbon w,? Figure 9 shows that the
conductivity is now high enough for the substrate modes
to appear in the energy-loss function. We notice that the
shape of the distribution has been affected and also that
the bulge on the high-frequency side has nof been
emphasized. Now BGS subtracted the no-loss line shape
from their data to obtain the loss function shown above.
Thus it is possible that their subtraction could obscure
structure arising from a backplate of moderate con-
ductivity, since the structure occurs in the region where
the subtraction is taking place. However, on the basis of
our carbon results, it seems probable that the experi-
mental results of BGS donot reflect backplate properties.

IV. DISCUSSION AND CONCLUSION

Using the local approximation, we have developed a
theory for electron energy loss in films which includes
the effects of retardation and substrates. We have
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Fi1c. 9. Loss function ({AU(Q))) showing the effect of
moderately conductive ‘“‘carbon.” Shown for comparison is the
experimental curve and the theory without substrate, which is
the same as the theory with poorly conducting “carbon.” All
curves are for 700-A LiF thickness and 100-A “carbon” thickness.
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shown that for very thin films of LiF (<1000 A)
retardation is not important in the energy range of the
surface modes, but that for thicker films (~5000 &)
the changes that retardation makes in the surface-mode
dispersion relations would possibly be observable in an
energy-loss experiment. The most important reason for
this is that the contribution of the high-frequency
surface mode to the loss function is comparable to that
of the low-frequency mode for films of larger thickness,
and it is the high-frequency mode which changes most
significantly when retardation is included.

The theory was applied to the case of thin films of
LiF which have been studied experimentally by BGS*
and for which FK! have worked out the normal-mode
scheme. It was shown that because the half-width of the
energy-response function of the experimental apparatus
is of the same order of magnitude as the energy of the
modes which are responsible for the energy loss, this
response function must be considered if any detailed
comparison with the data is to be made. It was found
that the theoretical-loss function was relatively in-
sensitive to the angular-response function of the ap-
paratus and to small variations in the film thickness.
The frequency-response function and a substrate, if
present, can affect the loss function significantly.

All of the parameters concerning the experiment on
the single LiF film were adjusted to attempt to match
two characteristics of the experimental distribution:
the peak position and the bulge on the high-frequency
side of the peak. From our results these characteristics
can be readily interpreted physically. The principal
peak arises from the small wave-vector portion of the
low-frequency surface-mode dispersion curve and the
bulge from the large wave-vector portion of this same
dispersion curve. This means the bulge occurs where
e(Q)=—1, independent of film thickness. The peak and
the bulge obtained experimentally could not simultane-
ously be reproduced in complete detail, but the structure
of the theoretical curves is in excellent agreement with
the experimental results.?

Calculations showed that if the LiF film is deposited
on a low-conductivity free-electron backplate [con-
ductivity ~(10)75 of that of Al at w=w,], there is a
negligible change in the loss distribution from the
distribution with no substrate. For higher conductivities
the surface modes of that particular “metal” appear in
the loss distribution.

There seems to be no doubt that the general features
of the loss experiment of BGS are described well by the
local theory. However, the lack of knowledge about the
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exact frequency- and angular-response functions, and
the dielectric function of the substrate negates any
chance of obtaining any more theoretical information
from their data. There are several ways of increasing the
amount of information which can be obtained from this
kind of an experiment. One might try thicker films. If
one can successfully eliminate effects associated with
multiple scattering, then data on the high-frequency
surface mode would result leading to information on
retardation effects. Experimentally, an improvement in
the angular resolution by a factor of 4 or an improve-
ment in the energy resolution by a factor of even 2
would be highly significant. Such improvements might
well provide an answer to the question as to whether a
nonlocal theory is really necessary to understand the
physical processes in this kind of thin film.

In analyzing their data, BGS plotted the energy of
the peak of the experimental loss distribution as a
function of the slab thickness. BGS then compared this
plot with a theoretical curve derived from the dis-
persion curves of FK. This theoretical curve was
obtained by intersecting the FK dispersion curves for
various slab thicknesses with the curve made of the
maxima of the angular distribution

K
K*4-Q2/p2’
where 3=uv/c. These intersection points are assumed to
yield values of @ for which the distribution (AU (Q))

has its peak. Equation (32) and also the angular dis-
tribution

(32)

K

( K2+Q2 /52)2
appear as coefficients of the bulk and surface terms,
respectively, of Eq. (23) of the nonretarded theory
given by Ritchie.® For purposes of clarification, Fig. 6
shows plots of peak position versus thickness obtained
(1) theoretically from both of the above angular
distributions, (2) from the complete theory for three re-
solution functions, 0.017, 0.010, and 0.0 eV [= (AU (Q) )],
and (3) from the BGS experiment. Noting the ex-
panded ordinate in Fig. 6, we see that, as BGS stated in
their report, the curve obtained directly from the dis-
persion relation gives a sufficiently close comparison to
the data to suggest the basic validity of the local theory.
However, we have shown in this paper that to under-
stand the experimental results in any detail requires
considerably more than a knowledge of the dispersion
curves.

(33)

* Work performed in the Ames Laboratory of the U.S. Atomic
Energy Commission, contribution No. 2673.
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By use of Fourier-integral representations and lattice orthogonality relations, Madelung sums are cast
in a form which explicitly separates contributions due to crystal symmetry from those due to the detailed
arrangement of neighboring ions. The usefulness and mathematical soundness of the method are demon-
strated by verifying known Madelung constants and by obtaining more accurate values for the electrostatic
energies of low-density plasma models. The method is also easily applied to the study of ionic displacements

or crystal defects.
I. INTRODUCTION

In connection with electronic-structure calculations
of crystalline solids, we found it convenient to introduce
a Fourier-integral representation for the electrostatic
potential energy. The various contributions of opposite
sign exhibit cancellations and limiting properties also
manifested by classical electrostatic interactions as
encountered in the evaluation of Madelung constants.
We therefore found it profitable to reinvestigate the
Madelung problem to establish the correctness of the
mathematical steps, and to determine highly accurate
values of numerical constants entering the electronic-
structure studies.

The classical methods for the evaluation of Madelung
sums are those of Evjen! and Ewald.? These sums,
which are conditionally (and slowly) convergent, are in
Evjen’s method analyzed by grouping contributions into
shells with vanishing low-order multiple moments.
Ewald introduces an integral transformation which is
then broken into two parts, each of which is more
rapidly convergent than the original sum. However,
neither of these methods has really made the evaluation
of Madelung sums as simple as might be desired.
Refinements and modifications of the Evjen and Ewald

procedures have therefore been investigated; of note are
the contributions of Emersleben® and of Bertaut.*

The explicit use of Fourier transforms in lattice-sum
evaluations has been considered before,® and in fact a
treatment containing some of the features of that
described here is to be found in the work of Nijboer
and De Wette.® However, the previous use of Fourier
methods has been such as to avoid the mathematical
difficulties associated with arrays of point charges, and
the finally resulting formulations are not optimal for the
application we contemplate to quantum mechanics.
In contrast, we find that passage to the point-charge
limit leads to simple and useful final formulas.

Our final formulas in effect calculate the electrostatic
energy as a deviation from a limiting case in which ions
of one sign are immersed in a uniform background of
opposite charge. This limiting case, familiar in plasma
physics, is treated with the aid of the Euler-Maclaurin
summation formula. The notion of a point-charge array
and compensating uniform background has also
entered previous discussions of Madelung energies.
For example, Tosi’ reviews methods whereby this idea
can be used to relate Madelung constants of different
structures of the same lattice symmetry. The resulting
formulas are similar to those presented here. The most



